Bifurcation from Codimension One Relative Homoclinic Cycles
نویسندگان
چکیده
We study bifurcations of relative homoclinic cycles in flows that are equivariant under the action of a finite group. The relative homoclinic cycles we consider are not robust, but have codimension one. We assume real leading eigenvalues and connecting trajectories that approach the equilibria along leading directions. We show how suspensions of subshifts of finite type generically appear in the unfolding. Descriptions of the suspended subshifts in terms of the geometry and symmetry of the connecting trajectories are provided.
منابع مشابه
Construction of Codimension One Homoclinic Cycles
We give an explicit construction of families of Dm-equivariant polynomial vector fields in R possessing a codimension-one homoclinic cycle. The homoclinic cycle consist of m homoclinic trajectories all connected to the equilibrium at the origin. The constructed vector fields can provide a setting for a (numerical) bifurcation study of these homoclinic cycles, in particular for m a multiple of f...
متن کاملBifurcation of Codimension 3 in a Predator-Prey System of Leslie Type with Simplified Holling Type IV Functional Response
It was shown in [Li & Xiao, 2007] that in a predator–prey model of Leslie type with simplified Holling type IV functional response some complex bifurcations can occur simultaneously for some values of parameters, such as codimension 1 subcritical Hopf bifurcation and codimension 2 Bogdanov–Takens bifurcation. In this paper, we show that for the same model there exists a unique degenerate positi...
متن کاملLorenz attractors in unfoldings of homoclinic flip bifurcations
Lorenz like attractors are known to appear in unfoldings from certain codimension two homoclinic bifurcations for differential equations in R that possess a reflectional symmetry. This includes homoclinic loops under a resonance condition and the inclination flip homoclinic loops. We show that Lorenz like attractors also appear in the third possible codimension two homoclinic bifurcation (for h...
متن کاملCoexistence of Limit Cycles and Homoclinic Loops in a SIRS Model with a Nonlinear Incidence Rate
Recently, Ruan and Wang [J. Differential Equations, 188 (2003), pp. 135–163] studied the global dynamics of a SIRS epidemic model with vital dynamics and a nonlinear saturated incidence rate. Under certain conditions they showed that the model undergoes a Bogdanov–Takens bifurcation; i.e., it exhibits saddle-node, Hopf, and homoclinic bifurcations. They also considered the existence of none, on...
متن کاملBifurcation Analysis of a Predator-Prey System with Nonmonotonic Functional Response
We consider a predator-prey system with nonmonotonic functional response: p(x) = mx ax2+bx+1 . By allowing b to be negative (b > −2 √ a), p(x) is concave up for small values of x > 0 as it is for the sigmoidal functional response. We show that in this case there exists a Bogdanov–Takens bifurcation point of codimension 3, which acts as an organizing center for the system. We study the Hopf and ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009